quasiinvariant measure - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasiinvariant measure - traduction vers russe

Quasiinvariant measure

quasiinvariant measure         

математика

квазиинвариантная мера

overdone         
  • Robert Smirke]] (n.d.)
  • The first page of Shakespeare's ''Measure for Measure'', printed in the [[First Folio]] of 1623
  • William Hamilton]] of Isabella appealing to Angelo
  • ''Mariana'' (1851) by [[John Everett Millais]]
  • Pompey Bum, as he was portrayed by nineteenth-century actor [[John Liston]]
  • ''Mariana'' (1888) by [[Valentine Cameron Prinsep]]
  • ''Isabella'' (1888) by [[Francis William Topham]]
  • ''Claudio and Isabella'' (1850) by [[William Holman Hunt]]
PLAY BY SHAKESPEARE
Measure for measure; Barnardine; Measure For Measure; Mistress Overdone; Abhorson; Overdone; Over done; Kate Keepdown; Keepdown; Keep down
overdone adj. 1) преувеличенный, утрированный 2) пережаренный
keep down         
  • Robert Smirke]] (n.d.)
  • The first page of Shakespeare's ''Measure for Measure'', printed in the [[First Folio]] of 1623
  • William Hamilton]] of Isabella appealing to Angelo
  • ''Mariana'' (1851) by [[John Everett Millais]]
  • Pompey Bum, as he was portrayed by nineteenth-century actor [[John Liston]]
  • ''Mariana'' (1888) by [[Valentine Cameron Prinsep]]
  • ''Isabella'' (1888) by [[Francis William Topham]]
  • ''Claudio and Isabella'' (1850) by [[William Holman Hunt]]
PLAY BY SHAKESPEARE
Measure for measure; Barnardine; Measure For Measure; Mistress Overdone; Abhorson; Overdone; Over done; Kate Keepdown; Keepdown; Keep down

['ki:p'daun]

общая лексика

не вставать, продолжать сидеть или лежать

подавлять (восстание чувство)

держать в подчинении

уничтожать

оставлять на второй год

фразовый глагол

общая лексика

продолжать сидеть или лежать

не вставать

не поднимать

подавлять

сдерживать

мешать успеху

росту и т. п.

не допускать повышения

Définition

overdone
1.
If food is overdone, it has been spoiled by being cooked for too long.
The meat was overdone and the vegetables disappointing.
= overcooked
ADJ
2.
If you say that something is overdone, you mean that you think it is excessive or exaggerated.
In fact, the panic is overdone. As the map shows, the drought has been confined to the south and east of Britain.
ADJ: usu v-link ADJ

Wikipédia

Quasi-invariant measure

In mathematics, a quasi-invariant measure μ with respect to a transformation T, from a measure space X to itself, is a measure which, roughly speaking, is multiplied by a numerical function of T. An important class of examples occurs when X is a smooth manifold M, T is a diffeomorphism of M, and μ is any measure that locally is a measure with base the Lebesgue measure on Euclidean space. Then the effect of T on μ is locally expressible as multiplication by the Jacobian determinant of the derivative (pushforward) of T.

To express this idea more formally in measure theory terms, the idea is that the Radon–Nikodym derivative of the transformed measure μ′ with respect to μ should exist everywhere; or that the two measures should be equivalent (i.e. mutually absolutely continuous):

μ = T ( μ ) μ . {\displaystyle \mu '=T_{*}(\mu )\approx \mu .}

That means, in other words, that T preserves the concept of a set of measure zero. Considering the whole equivalence class of measures ν, equivalent to μ, it is also the same to say that T preserves the class as a whole, mapping any such measure to another such. Therefore, the concept of quasi-invariant measure is the same as invariant measure class.

In general, the 'freedom' of moving within a measure class by multiplication gives rise to cocycles, when transformations are composed.

As an example, Gaussian measure on Euclidean space Rn is not invariant under translation (like Lebesgue measure is), but is quasi-invariant under all translations.

It can be shown that if E is a separable Banach space and μ is a locally finite Borel measure on E that is quasi-invariant under all translations by elements of E, then either dim(E) < +∞ or μ is the trivial measure μ ≡ 0.

Traduction de &#39quasiinvariant measure&#39 en Russe